Frequency Translation Loops for RF Filtering Theory and Design
نویسنده
چکیده
Modern wireless transceivers are required to operate over a wide range of frequencies in order to support the multitude of currently available wireless standards. Wideband operation also enables future systems that aim for better utilization of the available spectrum through dynamic allocation. As such, co-existence problems like harmonic mixing and phase noise become a main concern. In particular, dealing with interference scenarios is crucial since they directly translate to higher linearity requirements in a receiver. With CMOS driving the consumer electronics market due to low cost and high level of integration demands, the continued increase in speed, mainly intended for digital applications, offers new possibilities for RF design to improve the linearity of front-end receivers. Furthermore, the readily available switches in CMOS have proven to be a viable alternative to traditional active mixers for frequency translation due to their high linearity, low flicker noise, and, most recently recognized, their impedance transformation properties. In this thesis, frequency translation feedback loops employing passive mixers are explored as a means to relax the linearity requirements in a front-end receiver by providing channel selectivity as early as possible in the receiver chain. The proposed receiver architecture employing such loop addresses some of the most common problems of integrated RF filters, while maintaining their inherent tunability. Through a simplified and intuitive analysis, the operation of the receiver is first examined and the design parameters affecting the filter characteristics, such as bandwidth and stop-band rejection, are determined. A systematic procedure for analyzing the linearity of the receiver reveals the possibility of LNA distortion canceling, which decouples the trade-off between noise, linearity and harmonic radiation. Next, a detailed analysis of frequency translation loops using passive mixers is developed. Only highly simplified analysis of such loops is commonly available in literature. The analysis is based on an iterative procedure to address the complexity introduced by the presence of LO harmonics in the loop and the lack of reverse isolation in the mixers, and results in highly accurate expressions for the harmonic and noise transfer functions of the system. Compared to the alternative of applying
منابع مشابه
Design and Simulation of a Clamped-Clamped Micromechanical Beam AM Frequency Mixer-Filter
In the last decade Micromechanical components for communication applications has been fabricated via IC-compatible MEMS technologies. In fact, its most important impact is not at the component level, but rather at the system level, by offering alternative transceiver architectures that reduce power consumption and enhance performance. In this paper a mixer-filter for AM frequency receiver with ...
متن کاملControl Theory for RF Feedback and Longitudinal Beam Stability
Progress in digital hardware solutions such as field programmable gate arrays (FPGA) has raised the question of how to design the algorithms of RF feedback. This especially applies to the feedback of the RF cavities and the longitudinal beam feedback for SIS100. For example, FPGAs currently allow FIR (finite impulse response) filter lengths of several tens of taps. This number of degrees of fre...
متن کاملDesign and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory
This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...
متن کاملDesign of nanofilters for optical nanocircuits
We theoretically and numerically study the design of optical "lumped" nanofiltering devices in the framework of our recently proposed paradigm for optical nanocircuits. In particular, we present a design of basic filtering elements, such as low-pass, pass-band, stop-band, and high-pass lumped nanofilters, for use in optical nanocircuits together with more complex designs, such as multizero or m...
متن کامل3-D RF Coil Design Considerations for MRI
High-frequency coils are widely used in medical applications, such as Magnetic Resonance Imaging (MRI) systems. A typical medical MRI includes a local radio frequency transmit/receive coil. This coil is designed for maximum energy transfer or wave transfer through magnetic resonance. Mutual inductance is a dynamic parameter that determines the energy quantity to be transferred wirelessly by ele...
متن کامل